
HNUST, 2009 1Gregor v. Bochmann, University of Ottawa

ICICS
International Conference on Information and

Communication Systems

December 2009

Gregor v. Bochmann
School of Information Technology and Engineering (SITE)

University of Ottawa
Canada

http://www.site.uottawa.ca/~bochmann/talks/Deriving-3.ppt

Service composition:
Deriving Component Designs from

Global Requirements

HNUST, 2009 2Gregor v. Bochmann, University of Ottawa

Abstract
Distributed systems are difficult to design because (1) message exchanges between the

different system components must be foreseen in order to coordinate the actions at the
different locations, and (2) the varying speed of execution of the different system
components, and the varying speed of message transmission through the different
networks through which the components are connected make it very hard to predict in
which order these messages could be received. This presentation deals with the early
development phases of distributed applications, such as communication systems,
service compositions or workflow applications. It is assumed that first a global
requirements model is established that makes abstraction from the physical distribution
of the different system functions. Once the architectural (distributed) structure of the
system has been selected, this global requirement model must be transformed into a set
of local behavior models, one for each of the components involved. Each local behavior
model, implemented on a separate device, realizes part of the system functions and
includes the exchange of messages necessary to coordinate the overall system behavior.
The presentation will first review several methods for describing global requirements
and local component behaviors, such as state machines, activity diagrams, Petri nets,
BPEL, sequence diagrams, etc. Then a new description paradigm based on the concept
of collaborations will be presented, together with some examples. The second part of
the presentation will concentrate on the problem of how local component behaviors can
be derived automatically from a given global requirements model. First it is assumed
that the ordering between different activities is defined by explicit control flow
relations. This is then generalized to the case where so-called weak sequencing is used
to describe the ordering of activities. Weak sequencing is the natural ordering relation
for the composition of sequence diagrams. Finally, an outlook at remaining problems
and possible applications in the context of service compositions, workflow modeling,

HNUST, 2009 3Gregor v. Bochmann, University of Ottawa

Historical notes (some of my papers)

 1978: meaning of
“a protocol P provides a

service S” (Finite State Description of
Communication Protocols)

 1980: submodule
construction (with Philip
Merlin)

 1986: protocol derivation
(with Reinhard Gotzhein)

 2006: service modeling with
collaborations (with Rolv

communication
service

Site A Site B

underlying service

protoc.
entity

protoc.
entity

Site A Site B

S

P P

HNUST, 2009 4Gregor v. Bochmann, University of Ottawa

The problem – a figure
 Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

Service models

Design models

Implementations

S1.1 S1.2

Design synthesis

Code generation

HNUST, 2009 5Gregor v. Bochmann, University of Ottawa

Type of applications
 Communication services

 telephony features (e.g. call waiting)
 teleconference involving many parties
 Social networking

 Workflows
 Intra-organization, e.g. banking application,

manufacturing
 inter-organisations, e.g. supply-chain management
 Different underlying technologies:

 Web Services
 GRID computing
 Cloud computing

 Dynamic partner selection: negotiation of QoS – possibly
involving several exchanges

HNUST, 2009 6Gregor v. Bochmann, University of Ottawa

The problem
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices
 Identify system components
 Define underlying communication service

 Define behavior of system components:
 Locally performed functions
 Communication protocol

 Required messages to be exchanged and order of
exchanges

 Coding of message types and parameters

HNUST, 2009 7Gregor v. Bochmann, University of Ottawa

Issues
 Define

 Global functional
requirements

 Non-functional
requirements

 Make high-level
architectural choices
 Identify system

components
 Define underlying

communication service

 Define behavior of
system components
 Local functions
 Protocol:

 Required messages
to be exchanged and
order of exchanges

 Coding of message
types and
parameters

What language / notation to use for
defining global requirements (dynamic
behavior)

Architectural choices have strong impact
on performance

Automatic derivation of component
behaviors ? e.g. [Bochmann 2007]

Performance prediction – based on
component behavior

 Response time, Throughput, Reliability

Choice of middleware platform for inter-
process communication
 E.g. Java RMI, Web Services, etc.

HNUST, 2009 8Gregor v. Bochmann, University of Ottawa

Different system architectures
 Distributed architectures

 Advantages: concurrency, failure resilience,
scalability

 Difficulties: communication delays, coordination
difficulties

 Distribution-concurrency at different levels:
 Several organizations
 Different types of computers (e.g. servers, desk-

tops, hand-held devices, etc.)
 Several CPUs in multi-core computers

HNUST, 2009 9Gregor v. Bochmann, University of Ottawa

Proposed notations
for global requirements

 UML Sequence diagrams
 UML Activity Diagrams
 XPDL (workflow) - BPMN (business process)
 Use Case Maps
 BPEL (Web Services) – Note: defines centralized behavior

 WS-CDL (“choreography”)
 Collaborations (as proposed by joint work with

university of Trondheim, Norway – see later)

Question:
How do they fit with the above

issues ?

HNUST, 2009 10Gregor v. Bochmann, University of Ottawa

Overview of this talk
1. Introduction
2. Formalisms for describing global

dynamic behaviors
3. Deriving component behaviors

3.1 Distributed workflows
3.2 Strong sequencing between sub-collaborations
3.3 Weak sequencing between sub-collaborations
3.4 Summary

4. Conclusions

HNUST, 2009 11Gregor v. Bochmann, University of Ottawa

2. Describing
functional requirements

 The functional requirements are usually
defined through a number of use cases.

 Use cases may be complex and need to be
defined precisely.

 We consider the following notations for this
purpose
 For structural aspects: Collaboration diagrams
 For the dynamic behavior:

 Activity diagrams (formalization: Petri nets)
 Sequence diagrams (only for simple cases)

HNUST, 2009 12Gregor v. Bochmann, University of Ottawa

Example of an Activity Diagram

HNUST, 2009 13Gregor v. Bochmann, University of Ottawa

Concepts
 Each Use Case is a scenario

 Actions (Activities) done by actors in some given order
 Actor: Swimlane - we call it component or role
 Order of execution:

 sequence, alternatives, concurrency, arbitrary control flows (can
be modeled by Petri nets)

 Interruption through priority events (not modeled by Petri nets)

 Abstraction: refinement of activity
 Data-Flow: Object flow - Question: what type of data is

exchanged (an extension of control flow)
 Input assertions for input data flow
 Output assertions for output data flow
 Conditions for alternatives

HNUST, 2009 14Gregor v. Bochmann, University of Ottawa

Other similar notations
 The following notations have very similar

semantics:
 Activity Diagrams (UML version 2)
 Use Case Maps (standardized by ITU)
 XPDL / BPMN (for workflow / business process

modeling)
 BPEL (for Web Services)

 Our new approach: An activity may be
distributed, we also call it a collaboration

 Formalization: Petri nets [Petri 1960]

HNUST, 2009 15Gregor v. Bochmann, University of Ottawa

Petri nets
Petri defined these nets in 1960. A net

contains places (that may hold tokens) and
transitions (that consume tokens from their
input places and produce tokens for their
output places, and may be considered
as“actions”). Tokens may contain data.
This diagram shows what happens when one transition is executed (fired):

HNUST, 2009 16Gregor v. Bochmann, University of Ottawa

Petri net and token machine

 Different transitions may execute
concurrently. This leads to a large number of
possible interleavings (execution orders).

 A Petri net is a more condensed
representation of all possibilities than a
corresponding state machine model (on the
right), also called “token machine”.

 The token machine is infinite if the number of
tokens in some place is not bounded.

HNUST, 2009 17Gregor v. Bochmann, University of Ottawa

Activity Diagram:
the corresponding Petri net

HNUST, 2009 18Gregor v. Bochmann, University of Ottawa

Free-choice nets – local choice
no choice

non-free choice

free choice

Component A

Component A

Component B

local choice

Non-local
choice

with conflict place

HNUST, 2009 19Gregor v. Bochmann, University of Ottawa

C

B

Example of a collaboration

sub-collab. SA sub-collab. SB

A A

A

A A
B

B C

C

A collaboration is an activity that involves
several parties, called roles.

 The following example is a collaboration involving three
roles A, B and C. Each transition of the Petri net is
performed by one of these roles. The order of execution is
defined by the Petri net.

B
B

HNUST, 2009 20Gregor v. Bochmann, University of Ottawa

Abstract view

Here the internals of the
Collaboration SA are hidden.
Only places that must contain
tokens for starting the
execution of the collaboration
are shown on the left interface,
and places for resulting output
tokens are shown on the right
interface.

sub-collab. SA

A AB

B

C
sub-collab. SA

A

B

B

HNUST, 2009 21Gregor v. Bochmann, University of Ottawa

Composition and abstraction
in Petri nets

Composition by joining places

Simplification by introducing
abstracted “transitions”

(we will call them
“collaborations”).

HNUST, 2009 22Gregor v. Bochmann, University of Ottawa

A “collaboration” is not a transition
The semantics of an abstracted

transition (a collaboration) is
not the same as a transition:

 A collaboration may begin
some partial execution when
some of the inputs are
present.

 A transition can fire (begin
execution) only when all
inputs are present.

Note: In UML Activity Diagrams,
an activity has this transition
property.

When we use Activity Diagrams
for modeling collaborations,
we assume that an activity is a
“collaboration” in the sense
above.

HNUST, 2009 23Gregor v. Bochmann, University of Ottawa

Sequence diagrams
 Sequence diagram (or Message Sequence

Chart - MSC) is a well-known modeling
paradigm showing a scenario of messages
exchanged between a certain number of
system components in some given order.

 Limitation: Normally, only a few of all the
possible scenarios are shown.

 High-Level MSC can be used to describe the
composition of MSCs (with weak sequencing
– see below)

HNUST, 2009 24Gregor v. Bochmann, University of Ottawa

Example: Taxi system (an activity diagram - each activity is a
collaboration between several roles: client, taxi, manager)

new client C

Request Free

Assign

Meet

Pick-up

Drive

Pay

FreeWithdraw

new taxi T
taxi leaves

client leaves

client
leaves

T

T

T

T
T
T T

T

T

C

C

C C

M

C

M

M

M

M

M

M : taxi manager

initiating role

terminating
roles

Off-duty

HNUST, 2009 25Gregor v. Bochmann, University of Ottawa

Taxi System
Detailed definitions of collaborations

req
C M

Request

meet

Drive

OK

CM

Meet

T
drive

OK

C T

assign

C

Assign

T

assign

M

assign

C T

assign

req free

meet

OK

drivepay

OK

off-duty

Example scenario
(sequence diagram)

HNUST, 2009 26Gregor v. Bochmann, University of Ottawa

Taxi System : Problematic scenarios

M

assign

C T

assign

req
free

non-local
choice

[Gouda 84] suggests:
define different priorities

for different roles

M

assign

C T

assign

req free

meet
with-
draw

race
condition

M

assign

C1 T

assign

req
free

C2

pick-up

non-local
Choice

(conflict over taxi)
“implied scenario”:

[Alur 2000] component behaviors
that realize the normal scenario

will also give rise to implied scenarios

HNUST, 2009 27Gregor v. Bochmann, University of Ottawa

Partial order of events
 Lamport [1978] pointed out that in a

distributed system, there is in general no
total order of events, only a partial order.
 The events taking place at a given component can be

totally ordered (assuming sequential execution).
 The reception of a message is after its sending.
 The after-relation is transitive.

a b
c

j

a

e

f

d

i

k

h
g

For example, we have b after a
and c after b; but d and e are
unrelated (no order defined -
concurrent), also j and i are
concurrent. d after a by
transitivity.

HNUST, 2009 28Gregor v. Bochmann, University of Ottawa

Weak sequencing
Weak sequencing (introduced for the High-

Level MSCs) is based on this partial order.
 Normal (strong) sequencing: C1 ; C2

 all actions of C1 must be completed before any
action of C2 may start.

 Weak sequencing: C1 ;w C2
 for each component c, all actions of C1 at c must be

completed before any action of C2 at c may start.
(only local sequencing is enforced by each component, no

global sequencing – this often leads to race conditions)

HNUST, 2009 29Gregor v. Bochmann, University of Ottawa

Example of
strong and weak sequencing

strongly sequenced
(blue after red)

weakly sequenced
(blue afterw red)

(there are often race conditions)

Coordination message

HNUST, 2009 30Gregor v. Bochmann, University of Ottawa

Notations for collaborations
UML proposes several notations to describe

different aspects of a system.
[Castejon 2010] proposes the following UML

notations (with slight modifications) for the
description of collaborations:
 Collaboration diagram to show the sub-collaborations

and the parties involved (structural aspects)
 Activity diagram to show the execution order of sub-

collaborations (with extensions to show the initiating
and terminating parties)

 Sequence diagram to show (for a sub-collaboration) the
details of message exchanges

HNUST, 2009 31Gregor v. Bochmann, University of Ottawa

Example: tele-consultation
Here is an example of a tele-consultation involving a patient

terminal (pt), doctor terminal (dt) and a testing device (dl)
at the patient’s premises.

Data
Logger DocTrmPatTrm

doTest

logValues

query

report

loop

ack

discalt

ack

ack

disc

sd Test ow CallDisconnect

Lo
gV

al
ue

s
 D

oT
es

t
G

et
V

al
ue

s

C
al

lD
is

co
nn

ec
t

Te
st

Collaboration
diagram

Activity
diagram

Sequence
Diagram

(CallSetup not shown)

HNUST, 2009 32Gregor v. Bochmann, University of Ottawa

3. Deriving component behaviors

Do you remember the problem ?

HNUST, 2009 33Gregor v. Bochmann, University of Ottawa

The problem
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices
 Identify system components
 Define underlying communication service

 Define behavior of system components:
 Locally performed functions
 Communication protocol

 Required messages to be exchanged and order of
exchanges

 Coding of message types and parameters

HNUST, 2009 34Gregor v. Bochmann, University of Ottawa

3.1 Distributed workflows
 We consider here the following situation:

 The global dynamic behavior is defined by an
Activity diagram (or a similar notation) where
each activity either represent a local action at a
single component or a collaboration among
several components.

 Explicit flow relations define a partial order
between terminating actions of some activities
and initiating actions of other activities.

 No weak sequencing is explicitely specified.

HNUST, 2009 35Gregor v. Bochmann, University of Ottawa

An example collaboration
Petri nets are a more simple formalism than Activity Diagrams.
Therefore it is useful to first look for a general algorithm to derive
component behaviors from global behavior specifications in the form of
a Petri net. We saw this example earlier.

sub-collab. SA sub-collab. SB

A A

A

A A
B

B

B C

C

CB
B

HNUST, 2009 36Gregor v. Bochmann, University of Ottawa

Component derivation rule
A B Global view

Component view
A B

send fm(x) to B receive fm(x) from A

x

A B

HNUST, 2009 37Gregor v. Bochmann, University of Ottawa

Example Activity Diagram
Ware-

house

Client

Office

Here all activities are local
to some component

HNUST, 2009 38Gregor v. Bochmann, University of Ottawa

Office component

Office
Send

to wareh.

Receive from

wareh.

to Client

Payment

from Client

If a partial order relation goes from one component to another, then it
should give rise to a send and receive operation in the respective
components.

HNUST, 2009 39Gregor v. Bochmann, University of Ottawa

Client component

Sent to
office

HNUST, 2009 40Gregor v. Bochmann, University of Ottawa

3.2. Strong sequencing
between abstract sub-collaborations

Collab. SA Collab. SBs

This strong sequence means:
all actions of SA must be
completed before actions of
SB can start.

The diagram below does not give strong sequencing: e.g. the transition of
C of collaboration SA may occur after or during collaboration SB.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C

C

B
B

HNUST, 2009 41Gregor v. Bochmann, University of Ottawa

Initiating and terminating actions

 initiating action - no action is earlier (according to the
partial order)

 terminating actions - no action is later
Strong sequencing SA ;s SB can be enforced

by ensuring that all terminating actions of
SA occur before all initiating actions of SB.

Transition C in SA
is a terminating
action.

Only after a, b and
c have a token
should tokens arrive
in d and e.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C
C

B
B

a

b

c

d

e

HNUST, 2009 42Gregor v. Bochmann, University of Ottawa

Realizing strong sequence

Collab.
SA

A

B

C

Collab.
SB

A

B B

located at some
given component

centralized
realization

Collab.
SA

A

B

C

Collab.
SB

A

B B

Distributed Realization
(first described in [Bochmann 86])

then apply derivation rule

A

B

B

A

C

Two ways to coordinate
the terminating and
initiating actions:
centralized
and distributed

B

B

HNUST, 2009 43Gregor v. Bochmann, University of Ottawa

Choice propagation

Collab. SC

A

AA B

B

C

Component B should know which alternative
was chosen
(include parameter xi in flow message)

x1

x2

Here the choice is done by
component A (local choice)

HNUST, 2009 44Gregor v. Bochmann, University of Ottawa

3.3. Component design
for weak sequencing

 We have described an algorithm for deriving
component designs from global behavior
specifications – including weak sequencing
[Bochmann 2007]

 It uses the approach described above and
includes the following features for dealing
with weak sequencing:
 Selective consumption of received messages

 Received message enter a pool. The component fetches (or
waits for) a given message when it is ready to consume it (like
the Petri net models, see also [Mooij 2005])

 An additional type of message: choice indication
message

 Additional message parameters, e.g. loop counters

HNUST, 2009 45Gregor v. Bochmann, University of Ottawa

Need for
choice indication message (cim)

With weak sequencing, each component must know when the current sub-
collaboration is locally complete in order to be ready to participate (or
initiate) the next sub-collaboration.
• This is difficult for component C at the end of sub-collaboration B (above)
if the upper branch was chosen (no message received).

Therefore we propose a choice indication message
(from A to C in this case)

A

B

sub-collab. SA sub-collab. SB

A

A

A
B

B C
C

B
B

a

b

c

d

e

C

;w

;w

HNUST, 2009 46Gregor v. Bochmann, University of Ottawa

Need for loop counters
With weak sequencing, a message referring to the

termination of a loop may arrive before a message
referring to the last loop execution. See example:

R1 R2 R3

b(u2)

a(u1)

a(u2)
b(u1)

c(v2)

R1
a

R2 R3

b

U
R1 R2 R3

V

c
d

e f

Note: Nakata [1998] proposed to include in each coordination message
an abbreviation of the complete execution history.

HNUST, 2009 47Gregor v. Bochmann, University of Ottawa

3.4 Summary
1. Define requirements in the

form of a collaboration model
2. Architectural choices: allocate

collaboration roles to different
system components

3. Derive component behavior
specifications (automated)

4. Evaluate performance and
other non-functional
requirements (revise
architectural choices, if
necessary)

5. Use automated tools to derive
implementations of
component behaviors.

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

HNUST, 2009 48Gregor v. Bochmann, University of Ottawa

Algorithm
for deriving component behaviors

 Step 1: Calculate starting, terminating and
participating roles for each sub-collaboration

 Step 2: Use architectural choices to
determine starting, terminating and
participating components.

 Step 3: For each component, use a
recursively defined transformation function
to derive the behavior of the component
from the global requirements (principles
explained above, for details see [Bochmann 2007])

HNUST, 2009 49Gregor v. Bochmann, University of Ottawa

Historical comments
 Initially, only strong sequencing, choice and

concurrency operators, plus sub-behaviors
[Bochmann and Gotzhein, 1986 and Gotzhein and Bochmann 1990]

 Main conclusions:
 Strong sequencing requires flow messages; need to identify

initiating and terminating roles
 Choice propagation: need for unique message parameters

 More powerful languages
 LOTOS [Kant 1996]

 recursive process call: >> ; disruption operator: [>
(impossibility of distributed implementation)

 Language with recursion and concurrency [Nakata 1998]

HNUST, 2009 50Gregor v. Bochmann, University of Ottawa

… for Petri nets

 Restriction: free-choice PN and “local choice”
(as discussed above) [Kahlouche et al. 1996]

 general Petri nets [Yamaguchi et al. 2007]

 It is quite complex (distributed choice of transition to be executed,
depending on tokens in places associated with different sites)

 Note: These methods can be easily extended to Colored Petri
nets (or Predicate Transition nets): exchanged messages now contain
tokens with data parameters

 Petri nets with registers (see next slide)
[Yamaguchi et al. 2003]

HNUST, 2009 51Gregor v. Bochmann, University of Ottawa

… for Petri net with registers
The Petri net has
 Local registers (e.g. R, R’)

A transition has
 External input or output

interaction (e.g. G)
 Enabling predicate
 Update operations on

registers

• The component behavior includes messages to exchange register
values for evaluating predicates and updating registers.
• The number of required messages depends strongly on the
distribution of the registers over the different components. –
Optimization problem.

HNUST, 2009 52Gregor v. Bochmann, University of Ottawa

Remaining problems
 Support complex temporal order relationships

with weak sequencing
 Example:

 Data flow from non-terminating components

 Concurrent sessions and dynamic selection of
collaboration partners

 Proof of correctness of derivation algorithm

HNUST, 2009 53Gregor v. Bochmann, University of Ottawa

Conclusions (i)
 Distributed system design in several steps:

1. Requirements model: global behavior in terms of certain activities
(collaborations) and their temporal ordering.

2. Architectural choices: Based on architectural and non-functional
requirements, allocate collaboration roles to system components

3. Deriving component behavior (can be automated)
 Proposed modeling language for requirements:

 Activity diagrams where an activity may be a collaboration between
several roles

 Identify roles for each activity (participating, starting, terminating)
 Hierarchical description of requirements in terms of sub-activities

(sub-collaborations)
 Can be applied to other modeling languages:

 Use Case Maps (standardized by ITU)
 BPEL (business process execution language – for Web Services)
 XPDL (Workflow Management Coalition) or BPMN (OMG)
 BPMN (business process modeling notation, OMG)

HNUST, 2009 54Gregor v. Bochmann, University of Ottawa

Conclusions (ii)

 Many fields of application:
 service composition for communication services
 workflows
 e-commerce applications - Web Services
 Grid and Cloud computing
 Multi-core computer architectures

 Further work:
 proving correctness of derivation algorithm
 tools for deriving component behavior specifications
 performance modeling for composed collaborations
 “agile dynamic architectures”

HNUST, 2009 55Gregor v. Bochmann, University of Ottawa

References
 [Alur 2000] Alur, Rajeev, Etessami, Kousha, & Yannakakis, Mihalis. 2000. Inference of message sequence charts.

Pages 304–313 of: 22nd International Conference on Software Engineering (ICSE’00).
 [Boch 86g] G. v. Bochmann and R. Gotzhein, Deriving protocol specifications from service specifications, Proc. ACM

SIGCOMM Symposium, 1986, pp. 148-156.
 [Bochmann 2008] G. v. Bochmann, Deriving component designs from global requirements, Proc. Intern. Workshop on

Model Based Architecting and Construction of Embedded Systems (ACES), Toulouse, Sept. 2008.
 [Castejon 2007] H. Castejón, R. Bræk, G.v. Bochmann, Realizability of Collaboration-based Service Specifications,

Proceedings of the 14th Asia-Pacific Soft. Eng. Conf. (APSEC'07), IEEE Computer Society Press, pp. 73-80, 2007.
 [Castejon 2010] H. Castejón , G.v. Bochmann, R. Bræk, Using Collaborations in the Development of Distributed

Services, submitted for publication.
 [Gotz 90a] R. Gotzhein and G. v. Bochmann, Deriving protocol specifications from service specifications including

parameters, ACM Transactions on Computer Systems, Vol.8, No.4, 1990, pp.255-283.
 [Goud 84] M. G. Gouda and Y.-T. Yu, Synthesis of communicating Finite State Machines with guaranteed progress,

IEEE Trans on Communications, vol. Com-32, No. 7, July 1984, pp. 779-788.
 [Lamport 1978] L. Lamport, "Time, clocks and the ordering of events in a distributed system", Comm. ACM, 21, 7, July,

1978, pp. 558-565.
 [Kant 96a] C. Kant, T. Higashino and G. v. Bochmann, Deriving protocol specifications from service specifications

written in LOTOS, Distributed Computing, Vol. 10, No. 1, 1996, pp.29-47.
 [Mouij 2005] A. J. Mooij, N. Goga and J. Romijn, "Non-local choice and beyond: Intricacies of MSC choice nodes", Proc.

Intl. Conf. on Fundamental Approaches to Soft. Eng. (FASE'05), LNCS, 3442, Springer, 2005.
 [Nakata 98] A. Nakata, T. Higashino and K. Taniguchi, "Protocol synthesis from context-free processes using event

structures", Proc. 5th Intl. Conf. on Real-Time Computing Systems and Applications (RTCSA'98), Hiroshima, Japan,
IEEE Comp. Soc. Press, 1998, pp.173-180.

 [Sanders 05] R. T. Sanders, R. Bræk, G. v. Bochmann and D. Amyot, "Service discovery and component reuse with
semantic interfaces", Proc. 12th Intl. SDL Forum, Grimstad, Norway, LNCS, vol. 3530, Springer, 2005.

 [Yama 03a] H. Yamaguchi, K. El-Fakih, G. v. Bochmann and T. Higashino, Protocol synthesis and re-synthesis with
optimal allocation of resources based on extended Petri nets., Distributed Computing, Vol. 16, 1 (March 2003), pp. 21-
36.

 [Yama 07] H. Yamaguchi, K. El-Fakih, G. v. Bochmann and T. Higashino, Deriving protocol specifications from service
specifications written as Predicate/Transition-Nets, Computer Networks, 2007, vol. 51, no1, pp. 258-284

HNUST, 2009 56Gregor v. Bochmann, University of Ottawa

Thanks !

Any questions ??

For copy of slides, see

http://www.site.uottawa.ca/~bochmann/talks/Deriving-3.ppt

