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Abstract
Distributed systems are difficult to design because (1) message exchanges between the 

different system components must be foreseen in order to coordinate the actions at the 
different locations, and (2) the varying speed of execution of the different system 
components, and the varying speed of message transmission through the different 
networks through which the components are connected make it very hard to predict in 
which order these messages could be received. This presentation deals with the early 
development phases of distributed applications, such as communication systems, 
service compositions or workflow applications. It is assumed that first a global 
requirements model is established that makes abstraction from the physical distribution 
of the different system functions. Once the architectural (distributed) structure of the 
system has been selected, this global requirement model must be transformed into a set 
of local behavior models, one for each of the components involved. Each local behavior 
model, implemented on a separate device, realizes part of the system functions and 
includes the exchange of messages necessary to coordinate the overall system behavior. 
The presentation will first review several methods for describing global requirements 
and local component behaviors, such as state machines, activity diagrams, Petri nets, 
BPEL, sequence diagrams, etc. Then a new description paradigm based on the concept 
of collaborations will be presented, together with some examples. The second part of 
the presentation will concentrate on the problem of how local component behaviors can 
be derived automatically from a given global requirements model. First it is assumed 
that the ordering between different activities is defined by explicit control flow 
relations. This is then generalized to the case where so-called weak sequencing is used 
to describe the ordering of activities. Weak sequencing is the natural ordering relation 
for the composition of sequence diagrams. Finally, an outlook at remaining problems 
and possible applications in the context of service compositions, workflow modeling, 
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Historical notes (some of my papers)

 1978: meaning of 
“a protocol P provides a 

service S” (Finite State Description of 
Communication Protocols)

 1980: submodule 
construction (with Philip 
Merlin)

 1986: protocol derivation 
(with Reinhard Gotzhein)

 2006: service modeling with 
collaborations (with Rolv

communication
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The problem – a figure
 Service2
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Type of applications
 Communication services

 telephony features (e.g. call waiting)
 teleconference involving many parties 
 Social networking

 Workflows 
 Intra-organization, e.g. banking application, 

manufacturing
 inter-organisations, e.g. supply-chain management
 Different underlying technologies:

 Web Services
 GRID computing
 Cloud computing

 Dynamic partner selection: negotiation of QoS – possibly 
involving several exchanges
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The problem 
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices 
 Identify system components
 Define underlying communication service

 Define behavior of system components: 
 Locally performed functions 
 Communication protocol 

 Required messages to be exchanged and order of 
exchanges

 Coding of message types and parameters
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Issues
 Define

 Global functional 
requirements

 Non-functional 
requirements

 Make high-level 
architectural choices 
 Identify system 

components
 Define underlying 

communication service

 Define behavior of 
system components
 Local functions
 Protocol:

 Required messages 
to be exchanged and 
order of exchanges

 Coding of message 
types and 
parameters

What language / notation to use for 
defining global requirements (dynamic 
behavior)

Architectural choices have strong impact 
on performance

Automatic derivation of component 
behaviors ?   e.g. [Bochmann 2007]

Performance prediction – based on 
component behavior

 Response time, Throughput, Reliability

Choice of middleware platform for inter-
process communication
 E.g. Java RMI, Web Services, etc.
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Different system architectures
 Distributed architectures

 Advantages: concurrency, failure resilience, 
scalability

 Difficulties: communication delays, coordination 
difficulties

 Distribution-concurrency at different levels:
 Several organizations
 Different types of computers (e.g. servers, desk-

tops, hand-held devices, etc.)
 Several CPUs in multi-core computers
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Proposed notations 
for global requirements

 UML Sequence diagrams
 UML Activity Diagrams
 XPDL (workflow) - BPMN (business process)
 Use Case Maps
 BPEL (Web Services) – Note: defines centralized behavior

 WS-CDL (“choreography”)
 Collaborations (as proposed by joint work with 

university of Trondheim, Norway – see later)

Question: 
How do they fit with the above 

issues ?
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Overview of this talk
1. Introduction
2. Formalisms for describing global 

dynamic behaviors
3. Deriving component behaviors

3.1 Distributed workflows
3.2 Strong sequencing between sub-collaborations
3.3 Weak sequencing between sub-collaborations 
3.4 Summary

4. Conclusions
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2.  Describing  
functional requirements

 The functional requirements are usually 
defined through a number of use cases.

 Use cases may be complex and need to be 
defined precisely.

 We consider the following notations for this 
purpose
 For structural aspects: Collaboration diagrams 
 For the dynamic behavior:

 Activity diagrams (formalization: Petri nets)
 Sequence diagrams (only for simple cases)
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Example of an Activity Diagram
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Concepts
 Each Use Case is a scenario

 Actions (Activities) done by actors in some given order
 Actor: Swimlane - we call it component or role
 Order of execution:

 sequence, alternatives, concurrency, arbitrary control flows (can 
be modeled by Petri nets)

 Interruption through priority events (not modeled by Petri nets)

 Abstraction: refinement of activity 
 Data-Flow: Object flow - Question: what type of data is 

exchanged (an extension of control flow)
 Input assertions for input data flow
 Output assertions for output data flow
 Conditions for alternatives
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Other similar notations
 The following notations have very similar 

semantics:
 Activity Diagrams (UML version 2)
 Use Case Maps (standardized by ITU)
 XPDL / BPMN (for workflow / business process 

modeling)
 BPEL (for Web Services)

 Our new approach: An activity may be 
distributed, we also call it a collaboration

 Formalization: Petri nets [Petri 1960]
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Petri nets
Petri defined these nets in 1960. A net 

contains places (that may hold tokens) and 
transitions (that consume tokens from their 
input places and produce tokens for their 
output places, and may be considered 
as“actions” ). Tokens may contain data.
This diagram shows what happens when one transition is executed (fired):
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Petri net and token machine

 Different transitions may execute 
concurrently. This leads to a large number of 
possible interleavings (execution orders). 

 A Petri net is a more condensed 
representation of all possibilities than a 
corresponding state machine model (on the 
right), also called “token machine”.

 The token machine is infinite if the number of 
tokens in some place is not bounded.
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Activity Diagram: 
the corresponding Petri net
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Free-choice nets – local choice
no choice

non-free choice

free choice

Component A

Component A

Component B

local choice

Non-local
choice

with conflict place
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C

B

Example of a collaboration

sub-collab. SA sub-collab. SB

A A

A

A A
B

B C

C

A collaboration is an activity that involves 
several parties, called roles.

 The following example is a collaboration involving three 
roles A, B and C. Each transition of the Petri net is 
performed by one of these roles. The order of execution is 
defined by the Petri net. 

B
B
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Abstract view

Here the internals of the 
Collaboration SA are hidden. 
Only places that must contain 
tokens for starting the 
execution of the collaboration 
are shown on the left interface, 
and places for resulting output 
tokens are shown on the right 
interface.

sub-collab. SA

A AB

B

C
sub-collab. SA

A

B

B
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Composition and abstraction 
in Petri nets

Composition by joining places

Simplification by introducing 
abstracted “transitions” 

(we will call them 
“collaborations”). 
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A “collaboration” is not a transition
The semantics of an abstracted 

transition (a collaboration) is 
not the same as a transition: 

 A collaboration may begin 
some partial execution when 
some of the inputs are 
present. 

 A transition can fire (begin 
execution) only when all 
inputs are present. 

Note: In UML Activity Diagrams, 
an activity has this transition 
property.

When we use Activity Diagrams 
for modeling collaborations, 
we assume that an activity is a 
“collaboration” in the sense 
above.
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Sequence diagrams
 Sequence diagram (or Message Sequence 

Chart - MSC) is a well-known modeling 
paradigm showing a scenario of messages 
exchanged between a certain number of 
system components in some given order.

 Limitation: Normally, only a few of all the 
possible scenarios are shown.

 High-Level MSC can be used to describe the 
composition of MSCs (with weak sequencing 
– see below) 
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Example: Taxi system (an activity diagram - each activity is a 
collaboration between several roles: client, taxi, manager)

new client C

Request Free

Assign

Meet

Pick-up

Drive

Pay

FreeWithdraw

new taxi T
taxi leaves

client leaves

client 
leaves

T

T

T

T
T
T T

T

T

C

C

C C

M

C

M

M

M

M

M

M : taxi manager

initiating role

terminating 
roles

Off-duty
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Taxi System
Detailed definitions of collaborations

req
C M

Request

meet

Drive

OK

CM

Meet

T
drive

OK

C T

assign

C

Assign

T

assign

M

assign

C T

assign

req free

meet

OK

drivepay

OK

off-duty

Example scenario
(sequence diagram)
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Taxi System : Problematic scenarios

M

assign

C T

assign

req
free

non-local
choice

[Gouda 84] suggests: 
define different priorities

for different roles

M

assign

C T

assign

req free

meet
with-
draw

race
condition

M

assign

C1 T

assign

req
free

C2

pick-up

non-local
Choice

(conflict over taxi)
“implied scenario”:

[Alur 2000] component behaviors 
that realize the normal scenario 

will also give rise to implied scenarios
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Partial order of events
 Lamport [1978] pointed out that in a 

distributed system, there is in general no 
total order of events, only a partial order.
 The events taking place at a given component can be 

totally ordered (assuming sequential execution).
 The reception of a message is after its sending.
 The after-relation is transitive.

a b
c

j

a

e

f

d

i

k

h
g

For example, we have b after a
and c after b; but d and e are 
unrelated (no order defined -
concurrent), also j and i are 
concurrent. d after a by 
transitivity.



HNUST, 2009 28Gregor v. Bochmann, University of Ottawa

Weak sequencing
Weak sequencing (introduced for the High-

Level MSCs) is based on this partial order.
 Normal (strong) sequencing: C1 ; C2

 all actions of C1 must be completed before any 
action of C2 may start.

 Weak sequencing: C1 ;w C2
 for each component c, all actions of C1 at c must be 

completed before any action of C2 at c may start.
(only local sequencing is enforced by each component, no 

global sequencing – this often leads to race conditions)
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Example of 
strong and weak sequencing

strongly sequenced
(blue after red)

weakly sequenced
(blue afterw red)

(there are often race conditions)

Coordination message
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Notations for collaborations
UML proposes several notations to describe 

different aspects of a system.
[Castejon 2010] proposes the following UML 

notations (with slight modifications) for the 
description of collaborations:
 Collaboration diagram to show the sub-collaborations 

and the parties involved (structural aspects)
 Activity diagram to show the execution order of sub-

collaborations (with extensions to show the initiating 
and terminating parties)

 Sequence diagram to show (for a sub-collaboration) the 
details of message exchanges
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Example: tele-consultation
Here is an example of a tele-consultation involving a patient 

terminal (pt), doctor terminal (dt) and a testing device (dl) 
at the patient’s premises.

Data
Logger DocTrmPatTrm

doTest

logValues

query

report

loop

ack

discalt

ack

ack

disc

sd Test ow CallDisconnect

Lo
gV

al
ue

s 
    D

oT
es

t
G

et
V

al
ue

s

C
al

lD
is

co
nn

ec
t

Te
st

Collaboration
diagram

Activity
diagram

Sequence
Diagram

(CallSetup not shown)
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3. Deriving component behaviors

Do you remember the problem ?
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The problem 
(early phase of the software development process)

 Define
 Global functional requirements
 Non-functional requirements

 Make high-level architectural choices 
 Identify system components
 Define underlying communication service

 Define behavior of system components: 
 Locally performed functions 
 Communication protocol 

 Required messages to be exchanged and order of 
exchanges

 Coding of message types and parameters



HNUST, 2009 34Gregor v. Bochmann, University of Ottawa

3.1 Distributed workflows
 We consider here the following situation:

 The global dynamic behavior is defined by an 
Activity diagram (or a similar notation) where 
each activity either represent a local action at a 
single component or a collaboration among 
several components. 

 Explicit flow relations define a partial order 
between terminating actions of some activities 
and initiating actions of other activities.

 No weak sequencing is explicitely specified.
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An example collaboration
Petri nets are a more simple formalism than Activity Diagrams. 
Therefore it is useful to first look for a general algorithm to derive 
component behaviors from global behavior specifications in the form of 
a Petri net. We saw this example earlier.

sub-collab. SA sub-collab. SB

A A

A

A A
B

B

B C

C

CB
B
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Component derivation rule
A B Global view

Component view
A B

send fm(x) to B receive fm(x) from A

x

A B
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Example Activity Diagram
Ware-

house

Client

Office

Here all activities are local 
to some component
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Office component

Office
Send

to wareh.

Receive from

wareh.

to Client

Payment 

from Client

If a partial order relation goes from one component to another, then it 
should give rise to a send and receive operation in the respective 
components. 
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Client component

Sent to
office
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3.2. Strong sequencing
between abstract sub-collaborations

Collab. SA Collab. SBs

This strong sequence means: 
all actions of SA must be 
completed before actions of 
SB can start.

The diagram below does not give strong sequencing: e.g. the transition of 
C of collaboration SA may occur after or during collaboration SB.

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C

C

B
B
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Initiating and terminating actions

 initiating action - no action is earlier (according to the 
partial order)

 terminating actions - no action is later 
Strong sequencing SA ;s SB can be enforced 

by ensuring that all terminating actions of 
SA occur before all initiating actions of SB.

Transition C in SA 
is a terminating 
action.

Only after a, b and 
c have a token 
should tokens arrive 
in d and e. 

sub-collab. SA sub-collab. SB

A

A

A A
B

B

B C
C

B
B

a

b

c

d

e
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Realizing strong sequence

Collab. 
SA

A

B

C

Collab. 
SB

A

B B

located at some 
given component

centralized
realization

Collab. 
SA

A

B

C

Collab. 
SB

A

B B

Distributed Realization 
(first described in [Bochmann 86])

then apply derivation rule

A

B

B

A

C

Two ways to coordinate 
the terminating and 
initiating actions: 
centralized
and distributed

B

B
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Choice propagation

Collab. SC

A

AA B

B

C

Component B should know which alternative 
was chosen 
(include parameter xi in flow message) 

x1

x2

Here the choice is done by 
component A (local choice)
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3.3. Component design 
for weak sequencing

 We have described an algorithm for deriving 
component designs from global behavior 
specifications – including weak sequencing 
[Bochmann 2007]

 It uses the approach described above and 
includes the following features for dealing 
with weak sequencing:
 Selective consumption of received messages

 Received message enter a pool. The component fetches (or 
waits for) a given message when it is ready to consume it (like 
the Petri net models, see also [Mooij 2005])

 An additional type of message: choice indication 
message

 Additional message parameters, e.g. loop counters 
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Need for 
choice indication message (cim)

With weak sequencing, each component must know when the current sub-
collaboration is locally complete in order to be ready to participate (or 
initiate) the next sub-collaboration.
• This is difficult for component C at the end of sub-collaboration B (above) 
if the upper branch was chosen (no message received). 

Therefore we propose a choice indication message
( from A to C in this case ) 

A

B

sub-collab. SA sub-collab. SB

A

A

A
B

B C
C

B
B

a

b

c

d

e

C

;w

;w
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Need for loop counters
With weak sequencing, a message referring to the 

termination of a loop may arrive before a message 
referring to the last loop execution. See example:

R1 R2 R3

b(u2)

a(u1)

a(u2)
b(u1)

c(v2)

R1
a

R2 R3

b

U
R1 R2 R3

V

c
d

e f

Note: Nakata [1998] proposed to include in each coordination message
an abbreviation of the complete execution history.
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3.4 Summary
1. Define requirements in the 

form of a collaboration model
2. Architectural choices: allocate 

collaboration roles to different 
system components

3. Derive component behavior 
specifications (automated)

4. Evaluate performance and 
other non-functional 
requirements (revise 
architectural choices, if 
necessary)

5. Use automated tools to derive 
implementations of 
component behaviors.

 Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation

Service2

Service1

Service3

C 1 C 2 C 3 C 4

S1.1 S1.2

Design synthesis

Code generation
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Algorithm 
for deriving component behaviors

 Step 1: Calculate starting, terminating and 
participating roles for each sub-collaboration 

 Step 2: Use architectural choices to 
determine starting, terminating and 
participating components.

 Step 3: For each component, use a 
recursively defined transformation function
to derive the behavior of the component 
from the global requirements (principles 
explained above, for details see [Bochmann 2007])
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Historical comments
 Initially, only strong sequencing, choice and 

concurrency operators, plus sub-behaviors 
[Bochmann and Gotzhein, 1986 and Gotzhein and Bochmann 1990]

 Main conclusions:
 Strong sequencing requires flow messages; need to identify 

initiating and terminating roles
 Choice propagation: need for unique message parameters

 More powerful languages
 LOTOS [Kant 1996]

 recursive process call:  >> ; disruption operator:  [>      
(impossibility of distributed implementation)

 Language with recursion and concurrency [Nakata 1998]



HNUST, 2009 50Gregor v. Bochmann, University of Ottawa

… for Petri nets

 Restriction: free-choice PN and “local choice”
(as discussed above) [Kahlouche et al. 1996]

 general Petri nets [Yamaguchi et al. 2007]

 It is quite complex (distributed choice of transition to be executed, 
depending on tokens in places associated with different sites)

 Note: These methods can be easily extended to Colored Petri 
nets (or Predicate Transition nets): exchanged messages now contain 
tokens with data parameters

 Petri nets with registers (see next slide) 
[Yamaguchi et al. 2003]
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… for Petri net with registers
The Petri net has
 Local registers (e.g. R, R’)

A transition has
 External input or output 

interaction (e.g. G)
 Enabling predicate
 Update operations on 

registers

• The component behavior includes messages to exchange register 
values for evaluating predicates and updating registers. 
• The number of required messages depends strongly on the 
distribution of the registers over the different components. –
Optimization problem.
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Remaining problems
 Support complex temporal order relationships 

with weak sequencing
 Example: 

 Data flow from non-terminating components

 Concurrent sessions and dynamic selection of 
collaboration partners

 Proof of correctness of derivation algorithm
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Conclusions (i)
 Distributed system design in several steps:

1. Requirements model: global behavior in terms of certain activities 
(collaborations) and their temporal ordering.

2. Architectural choices: Based on architectural and non-functional 
requirements, allocate collaboration roles to system components

3. Deriving component behavior (can be automated)
 Proposed modeling language for requirements: 

 Activity diagrams where an activity may be a collaboration between 
several roles

 Identify roles for each activity (participating, starting, terminating)
 Hierarchical description of requirements in terms of sub-activities 

(sub-collaborations)
 Can be applied to other modeling languages:

 Use Case Maps (standardized  by ITU)
 BPEL (business process execution language – for Web Services)
 XPDL (Workflow Management Coalition) or BPMN (OMG)
 BPMN (business process modeling notation, OMG)
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Conclusions (ii)

 Many fields of application:
 service composition for communication services
 workflows
 e-commerce applications - Web Services
 Grid and Cloud computing
 Multi-core computer architectures

 Further work:
 proving correctness of derivation algorithm
 tools for deriving component behavior specifications
 performance modeling for composed collaborations
 “agile dynamic architectures”
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Thanks !

Any questions ??

For copy of slides, see

http://www.site.uottawa.ca/~bochmann/talks/Deriving-3.ppt 


